Designer molecular probes for phosphonium ionic liquids.

نویسندگان

  • Robert Byrne
  • Simon Coleman
  • Simon Gallagher
  • Dermot Diamond
چکیده

Investigations into the extent of structuring present in phosphonium based ionic liquids (ILs) have been carried out using photochromic molecular probes. Three spiropyran derivatives containing hydroxyl (BSP-1), carboxylic acid (BSP-2) and aliphatic chain (C(14)H(29)) (BSP-3) functional groups have been analysed in a range of phosphonium based ionic liquids and their subsequent physico-chemical interactions were reported. It is believed that the functional groups locate the probe molecules into specific regions based upon the interaction of the functional groups with particular and defined regions of the ionic liquid. This structuring results in thermodynamic, kinetic and solvatochromic parameters that are not predictable from classical solvent models. BSP-1 and BSP-2 exhibit generally negative entropies of activation ranging from -50 J K(-1) mol(-1) to -90 J K(-1) mol(-1) implying relatively low solvent-solute interactions and possible anion interactions with IL polar functional groups. Higher than expected activation energies of 60 kJ mol(-1) to 100 kJ mol(-1) obtained for polar probes maybe be due to IL functional groups competing with the charged sites of the merocyanine (MC) isomer thus reducing MC stabilisation effects. Differences in thermal relaxation rate constants (2.5 x 10(-3) s(-1) in BSP-1 and 3 x 10(-4) s(-1) in BSP-2 in [P(6,6,6,14)][dbsa]) imply that while the polar probe systems are primarily located in polar/charged regions, each probe experiences slightly differing polar domains. BSP-3 entropies of activation are positive and between 30 J K(-1) mol(-1) to 66 J K(-1) mol(-1). The association of the non-polar functional group is believed to locate the spiropyran moiety in the interfacial polar and non-polar regions. The thermal relaxation of the MC form causes solvent reorientation to accommodate the molecule as it reverts to its closed form. Slow thermal relaxation rate constants were obserevd in contrast to high activation energies (5 x 10(-4) s(-1) and 111.91 kJ mol(-1) respectively, for BSP-3 in [P(6,6,6,14)][dbsa]). This may be due to steric effects arising from proposed nano-cavity formation by the alkyl chains in phosphonium based ILs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protic ionic liquids based on phosphonium cations: comparison with ammonium analogues.

Novel protic ionic liquids (PILs) based on a tributyl phosphonium cation have been synthesised and characterised, revealing that the phosphonium based ILs show high thermal stability, high ionic conductivity and facile proton reduction compared to the corresponding ammonium based ILs.

متن کامل

Highly fluorinated phosphonium ionic liquids: novel media for the generation of superhydrophobic coatings.

A new class of highly fluorinated phosphonium ionic liquids (HFPILs) that are thermally stable, non-volatile, tuneable small molecules has been synthesized; they are uniquely suited for creating novel superhydrophobic coatings, offering a new paradigm in the application of ionic liquids.

متن کامل

Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations.

The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with a...

متن کامل

Solvation dynamics in imidazolium and phosphonium ionic liquids: Effects of solute motion

Experimental and simulation results of solvation dynamics in ionic liquids have so far been explained in terms of translational motion of the ions constituting the ionic liquids under investigation. A recent theoretical study [Kashyap & Biswas, J Phys Chem B, 114 (2010) 254] has indicated that while translational motion of the constituent ions is indeed responsible for Stokes’ shift dynamics of...

متن کامل

Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K(3)PO(4) solutions was evaluated for the first time. Ternary phase diagrams, and respective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2010